
COURSE NAME:
DATA WAREHOUSING & DATA MINING

LECTURE 17
TOPICS TO BE COVERED:

 Decision tree

CLASSIFICATION BY DECISION TREE
INDUCTION

 Decision tree
 A flow-chart-like tree structure
 Internal node denotes a test on an attribute
 Branch represents an outcome of the test
 Leaf nodes represent class labels or class distribution

 Decision tree generation consists of two phases
 Tree construction

 At start, all the training examples are at the root
 Partition examples recursively based on selected attributes

 Tree pruning
 Identify and remove branches that reflect noise or outliers

 Use of decision tree: Classifying an unknown sample
 Test the attribute values of the sample against the decision tree

TRAINING DATASET

age income student credit_rating
<=30 high no fair
<=30 high no excellent
31…40 high no fair
>40 medium no fair
>40 low yes fair
>40 low yes excellent
31…40 low yes excellent
<=30 medium no fair
<=30 low yes fair
>40 medium yes fair
<=30 medium yes excellent
31…40 medium no excellent
31…40 high yes fair
>40 medium no excellent

This
follows
an
example
from
Quinlan’s
ID3

OUTPUT: A DECISION TREE FOR
“BUYS_COMPUTER”

age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40

DECISION TREE INDUCTION
During the late 1970s and early 1980s, J. Ross Quinlan, a

researcher in machine learning, developed a decision tree
algorithm known as ID3 (Iterative Dichotomiser).

This work expanded on earlier work on concept learning
systems, described by E. B. Hunt, J. Marin, and P. T. Stone.
Quinlan later presented C4.5 (a successor of ID3), which
became a benchmark to which newer supervised learning
algorithms are often compared.

In 1984, a group of statisticians (L. Breiman, J. Friedman, R.
Olshen, and C. Stone) published the book Classification
and Regression Trees (CART), which described the
generation of binary decision trees.

These two cornerstone algorithms spawned a flurry of work
on decision tree induction.

DECISION TREE INDUCTION

Algorithms for decision tree induction also follow such a top-down
approach, which starts with a training set of tuples and their
associated class labels. The training set is recursively partitioned
into smaller subsets as the tree is being built.

ALGORITHM FOR DECISION TREE INDUCTION

 Basic algorithm (a greedy algorithm)
 Tree is constructed in a top-down recursive divide-and-conquer

manner
 At start, all the training examples are at the root
 Attributes are categorical (if continuous-valued, they are

discretized in advance)
 Examples are partitioned recursively based on selected attributes
 Test attributes are selected on the basis of a heuristic or statistical

measure (e.g., information gain)
 Conditions for stopping partitioning

 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning – majority

voting is employed for classifying the leaf
 There are no samples left

ATTRIBUTE SELECTION MEASURE

 Three popular attribute selection measures—information gain, gain
ratio, and gini index.

 The notation used herein is as follows.
Let D, the data partition, be a training set of class-labeled tuples.
Suppose the class label attribute has m distinct values defining m
distinct classes, Ci (for i = 1, …, m).
Let Ci,D be the set of tuples of class Ci in D. Let |D| and |Ci,D| denote the
number of tuples in D and Ci,D, respectively.

INFORMATION GAIN

 ID3 uses information gain as its attribute selection measure.
 Let node N represent or hold the tuples of partition D. The attribute with

the highest information gain is chosen as the splitting attribute for node
N. This attribute minimizes the information needed to classify the tuples
in the resulting partitions and reflects the least randomness or “impurity”
in these partitions. Such an approach minimizes the expected number of
tests needed to classify a given tuple and guarantees that a simple (but
not necessarily the simplest) tree is found. The expected information
needed to classify a tuple in D is given by

INFORMATION GAIN

 where pi is the probability that an arbitrary tuple in D belongs to class Ci
and is estimated by |Ci ,D \ / |D|.

 A log function to the base 2 is used, because the information is encoded
in bits.

 Info(D) is just the average amount of information needed to identify the
class label of a tuple in D.

 Note that, at this point, the information we have is based solely on the
proportions of tuples of each class. Info(D) is also known as the entropy
of D.

INFORMATION GAIN

 Now, suppose we were to partition the tuples in D on some attribute A
having v distinct values, {a1 ,a2,…, av}, as observed from the training
data.

 If A is discrete-valued, these values correspond directly to the v
outcomes of a test on A. Attribute A can be used to split D into v
partitions or subsets, {D1, D2 ,… , Dv }, where Dj contains those tuples in
D that have outcome aj of A.

 These partitions would correspond to the branches grown from node N.
Ideally, we would like this partitioning to produce an exact classification
of the tuples. That is, we would like for each partition to be pure.
However, it is quite likely that the partitions will be impure (e.g., where a
partition may contain a collection of tuples from different classes rather
than from a single class). How much more information would we still
need (after the partitioning) in order to arrive at an exact classification?

INFORMATION GAIN

 This amount is measured by

 The term |Dj \|\D\ acts as the weight of the jth partition.
 InfoA(D) is the expected information required to classify a tuple from D

based on the partitioning by A.
 The smaller the expected information (still) required, the greater the

purity of the partitions.

INFORMATION GAIN

 Information gain is defined as the difference between the original
information requirement (i.e., based on just the proportion of classes)
and the new requirement (i.e., obtained after partitioning on A). That is,

INFORMATION GAIN

 In other words, Gain(A) tells us how much would be gained by branching
on A. It is the expected reduction in the information requirement caused
by knowing the value of A.

 The attribute A with the highest information gain, (Gain(A)), is chosen as
the splitting attribute at node N. This is equivalent to saying that we
want to partition on the attribute A that would do the “best classification,”
so that the amount of information still required to finish classifying the
tuples is minimal (i.e., minimum InfoA(D)).

EXAMPLE

EXAMPLE

GAIN RATIO

 The gain ratio is defined as

 Where SplittingInfo(A) is describe as
 It applies a kind of normalization to information gain using a “split

information” value defined analogously with Info(D) as

 This value represents the potential information generated by
splitting the training data set, D, into v partitions, corresponding to
the v outcomes of a test on attribute A.

EXAMPLE

 Computation of gain ratio for the attribute income. A test on income splits
the data of previous example into three partitions, namely low, medium,
and high, containing four, six, and

 four tuples, respectively.

we have Gain(income) = 0.029. Therefore,
GainRatio(income) = 0.029/0.926 = 0.031.

GINI INDEX

 the Gini index measures the impurity of D, a data partition or set of
training tuples, as

 where pi is the probability that a tuple in D belongs to class Ci and is
estimated by \Ci,D \ / \D\. The sum is computed over m classes.

 The Gini index considers a binary split for each attribute. Let’s first
consider the case where A is a discrete-valued attribute having v distinct
values, {a1, a2 ,… , av}, occurring in D

 if a binary split on A partitions D into D1 and D2, the gini index of D given
that partitioning is

 The reduction in impurity that would be incurred by a binary split on a
discrete- or continuous-valued attribute A is

 The attribute that maximizes the reduction in impurity (or, equivalently,
has the minimum Gini index) is selected as the splitting attribute.

EXAMPLE

 Induction of a decision tree using gini index. Let D be the training data of
previous example where there are nine tuples belonging to the class
buys_computer = yes and the remaining five tuples belong to the class
buys_computer = no. A (root) node N is created for the tuples in D.

 Gini index to compute the Impurity of D:

 To find the splitting criterion for the tuples in D, we need to compute the
gini index for each attribute. Let’s start with the attribute income and
consider each of the possible splitting subsets. Consider the subset {low,
medium}.This would result in 10 tuples in
partition D1 satisfying the condition “income {low, medium}.” The
remaining four tuples of D would be assigned to partition D2. The Gini
index value computed based on this partitioning is

